1. The rate constant, k, is commonly described by the Arrhenius equation:
$\mathrm{k}=\mathrm{A}^{*} \exp \left[-\mathrm{E}_{\mathrm{a}} / \mathrm{RT}\right]$
Which of the following statements are correct?
I. A greater E_{a} value results in a smaller k value.
II. Reactions of less complex molecules usually have a greater value of A.
III. The slope (gradient) of $\ln k$ versus $1 / T$ equals E_{a}.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
2. Decomposition of hydrogen peroxide in an aqueous solution proceeds as follows.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})
$$

The rate expression for the reaction was found to be: rate $=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$.
Which graph is consistent with the given rate expression?
A.

B.

C.

D.

3. Bromine and nitrogen(II) oxide react according to the following equation.

$$
\mathrm{Br}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{~g}) \rightarrow 2 \mathrm{NOBr}(\mathrm{~g})
$$

Which rate equation is consistent with the experimental data?

$\left[\mathrm{Br}_{2}\right] / \mathrm{mol} \mathrm{dm}^{-3}$	$[\mathbf{N O}] / \mathrm{mol} \mathrm{dm}^{-3}$	Rate $/ \mathrm{mol} \mathrm{dm}^{-3} \mathbf{s}^{-1}$
0.10	0.10	1.0×10^{-6}
0.20	0.10	4.0×10^{-6}
0.20	0.40	4.0×10^{-6}

A. rate $=\mathrm{k}\left[\mathrm{Br}_{2}\right]^{2}[\mathrm{NO}]$
B. rate $=k\left[\mathrm{Br}_{2}\right][\mathrm{NO}]^{2}$
C. rate $=\mathrm{k}\left[\mathrm{Br}_{2}\right]^{2}$
D. rate $=k[\mathrm{NO}]^{2}$
4. Curve X on the graph below shows the volume of oxygen formed during the catalytic decomposition of a $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of hydrogen peroxide.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Which change would produce the curve Y ?
A. Adding water
B. Adding some $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrogen peroxide solution
C. Using a different catalyst
D. Lowering the temperature
5. The energy coordinate diagram for a hypothetical reaction is given below. Answer the following questions based on the diagram:

a. Is the reaction endothermic or exothermic? Explain. [2]
b. Does it require high activation energy or low activation energy? [1]
c. Draw the diagram for what the reaction energy would like if you added a catalyst to the reaction mixture. [2]
d. Explain how the catalyst changes activation energy with respect to its purpose in the reaction. [2]
6. Therapeutic hypothermia techniques involve lowering the body temperature to limit tissue damage in stroke victims or those resuscitated from cardiac arrest. The average pulse rate of an adult human at $37^{\circ} \mathrm{C}$ is about 75 beats min^{-1}. If the effective activation energy for the beating of the heart muscle is about 30 kJ , estimate the heart rate of a patient at $22^{\circ} \mathrm{C}$. [4]
7. The rate constant for the reaction $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{NO}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ was determined over a temperature range of 40 K with the following results

$\mathbf{T}(\mathbf{K})$	$\mathbf{k}(\mathbf{1} / \mathbf{M} * \mathbf{s})$
203	$4.14 \mathrm{E}+05$
213	$7.30 \mathrm{E}+05$
223	$1.22 \mathrm{E}+05$
233	$1.96 \mathrm{E}+06$
243	$3.02 \mathrm{E}+06$

a. Calculate the activation energy for this reaction. [3]
b. Calculate the rate constant for the reaction at 300K? [2]
8. The reaction described in question 4 was conducted in a lab. The following kinetics data were obtained for the reaction:

Expt	Conc of	Conc of	Init
$\#$	$\mathrm{NO}(\mathrm{M})$	$\mathrm{H}_{2}(\mathrm{M})$	Rate $(\mathrm{M} / \mathrm{s})$
1	0.100	0.100	0.00123
2	0.100	0.200	0.00246
3	0.200	0.100	0.00492

a. Based on the data provided, what is the rate law for this reaction? Support your answer. [2]
b. Based on the data above, calculate the rate constant. [2]
c. What order kinetics would this reaction follow? Support your answer. [2]
d. Calculate the rate when $[\mathrm{NO}]=0.0500 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=0.1500 \mathrm{M} .[2]$
e. How would the rate expression change if you conducted the experiment with a large excess of $\mathrm{H}_{2}(\mathrm{~g})$? What order kinetics would this follow? [2]

