Rate Equation [HL]

Experimentally determined! Not from the balanced equation!

Rate equation relates rate of reaction to concentration of reactants
rate $=k[A]^{X}$ for the reaction $A \rightarrow B$
The X superscript is not the coefficient from the balanced equation.

How to determine experimentally?
-run multiple reactions/experiments varying the concentration of the reactants
\sim keep at least one concentration constant from one reaction to the next -determine X from experimental data
~if conc. doubles and rate doesn't change, $X=0$
\sim if conc. doubles and rate is $x 2, X=1$
\sim if conc. doubles and rate is $x 4, X=2$
-solve for k by plugging in experimental data to new equation

Order of Reaction:
-sum of the superscripts within a rate equation

$$
\text { -ie rate }=[A]^{2}[B]^{2} \text { has an order of } 4
$$

0th order reactions are not concentration dependent.
-Rate is constant
rate $=k[A]^{0}$

1st order reactions are concentration dependent
-Rate increases at a constant value as conc. Increases rate $=k[A]$

2nd order reactions are concentration dependent

-Rate increases at an increasing value as conc. increases (parabolic)
rate $=k[A]^{2}$

Reaction Mechanisms [HL]

Reaction Mechanism

A set of steps that describe how a reaction occurs at the molecular level; must be consistent with the rate law for the reaction

Elementary Step

Molecular-level view of a single process taking place in a chemical reaction

Intermediate

Species produced in one step of a reaction and consumed in a subsequent step Rate Determining Step

The slowest step in a reaction mechanism
This slow step determines the overall rate
-each step in a mechanism can have a maximum of two molecules/atoms interacting -mechanisms can never be directly observed, only deduced from experimental evidence -one of the steps must agree with the rate equation
ex.

$$
\begin{aligned}
& 2 \mathrm{NO}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{NO}_{2} \mathrm{~F} \\
& \text { rate }=\mathrm{k}\left[\mathrm{NO}_{2}\right]\left[\mathrm{F}_{2}\right]
\end{aligned}
$$

This reaction is too complex to occur in one step. We need to break it down into smaller steps:

$$
\begin{array}{ll}
\mathrm{NO}_{2}+\mathrm{F}_{2} \rightarrow \mathrm{NO}_{2} \mathrm{~F}+\mathrm{F} & \text { Step 1 } \\
\mathrm{NO}_{2}+\mathrm{F} \rightarrow 2 \mathrm{NO}_{2} \mathrm{~F} & \text { Step } 2
\end{array}
$$

Compare the steps to the rate equation (determined experimentally)

$$
\begin{aligned}
& \text { rate }=\mathrm{k}_{1}\left[\mathrm{NO}_{2}\right]\left[\mathrm{F}_{2}\right] \\
& \text { rate }=\mathrm{k}_{2}\left[\mathrm{NO}_{2}\right][\mathrm{F}]
\end{aligned}
$$

Step 1 matches the rate equation for the overall equation
-Step 1 is the slow, rate-determining step

$$
\begin{array}{ll}
\mathrm{NO}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{NO}_{2} \mathrm{~F}+\mathrm{F} & \text { Step } 1 \text { Slow } \\
\mathrm{NO}_{2}+\mathrm{F} \rightarrow 2 \mathrm{NO}_{2} \mathrm{~F} & \text { Step } 2 \text { Fast }
\end{array}
$$

\rightarrow Catalysts change the mechanism of a reaction
\sim decreases the total E_{a} for the reaction, which increases the rate of rxn

Arrhenius Equation [HL]

-Can be used to calculate the activation energy $\left(E_{a}\right)$ for a reaction

$$
\mathrm{k}=\mathrm{Ae} \frac{-E_{a}}{R T} \text { or } \mathrm{k}=\operatorname{Aexp}\left(\frac{-E a}{R T}\right)
$$

Where A is the 'frequency factor' and R is $8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

Can be written in a more useful form,

$$
\ln (\mathrm{k})=\frac{-E a}{R} \mathrm{x}(1 / \mathrm{T})+\ln \mathrm{A}
$$

Which can be used to represent this graphically, where $y=\operatorname{lnk} ; m=-E_{a} / R ; x=1 / T ;$ and $b=\ln A$

In general, a high activation energy means that the rate is slower.
-Catalysts will increase the value of k within a rate equation

